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a b s t r a c t

Developing and validating data records from operational ocean
color satellite instruments requires substantial volumes of high
quality in situ data. In the absence of broad, institutionally sup-
ported field programs, organizations such as the NASA Ocean Bi-
ology Processing Group seek opportunistic datasets for use in their
operational satellite calibration and validation activities. The pub-
licly available, global biogeochemical dataset collected as part of
the two and a half year Tara Oceans expedition provides one such
opportunity. We showed how the inline measurements of hyper-
spectral absorption and attenuation coefficients collected onboard
the R/V Tara can be used to evaluate near-surface estimates of
chlorophyll-a, spectral particulate backscattering coefficients, par-
ticulate organic carbon, and particle size classes derived from the
NASA Moderate Resolution Imaging Spectroradiometer onboard
Aqua (MODISA). The predominant strength of such flow-through
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measurements is their sampling rate—the 375 days of measure-
ments resulted in 165 viable MODISA-to-in situ match-ups, com-
pared to 13 from discrete water sampling. While the need to
apply bio-optical models to estimate biogeochemical quantities
of interest from spectroscopy remains a weakness, we demon-
strated how discrete samples can be used in combination with
flow-through measurements to create data records of sufficient
quality to conduct first order evaluations of satellite-derived data
products. Given an emerging agency desire to rapidly evaluate new
satellite missions, our results have significant implications on how
calibration and validation teams for these missions will be con-
structed.

Published by Elsevier B.V.

1. Introduction

Satellite ocean color instruments provide consistent and high-density data on temporal and
spatial scales that far exceed current field and aircraft sampling strategies, often with time-series of
sufficient length to allow retrospective analysis of long-term trends. For example, the daily, synoptic
images captured by the NASA Sea-viewing Wide Field-of-view Sensor (SeaWiFS; 1997–2010) and
Moderate Resolution Imaging Spectroradiometer onboard Aqua (MODISA; 2002–present) provide
viable data records for observing decadal changes in biogeochemistry of both global and regional
ecosystems (McClain, 2009). Briefly, satellite ocean color instruments measure the spectral radiance
emanating from the top of the atmosphere at discrete visible and infrared wavelengths. Atmospheric
correction algorithms are applied to remove the contribution of the atmosphere from the total signal
and produce estimates of remote sensing reflectances (Rrs(λ); sr−1), the light exiting the water mass
normalized to a hypothetical condition of an overhead Sun and no atmosphere (Gordon and Wang,
1994). Bio-optical algorithms are applied to the Rrs(λ) to produce estimates of additional geophysical
properties, such as the near-surface concentration of the phytoplankton pigment chlorophyll-a
(Ca; mgm−3) and spectral marine inherent optical properties (IOPs), namely the absorption and
scattering properties of seawater and its particulate and dissolved constituents (O’Reilly et al., 1998;
Werdell et al., 2013). Time-series of these geophysical properties provide unparalleled resources for
studying carbon stocks, phytoplankton population diversity and succession, and ecosystem responses
to climatic disturbances on regional to global scales (e.g., Siegel et al., 2013).

Refining bio-optical algorithms and verifying ocean color satellite data products requires a sub-
stantial volume of in situ data to ensure their validity on global spatial and temporal scales (Werdell
and Bailey, 2005; Bailey andWerdell, 2006). Previously, large volumes of high quality data were most
successfully acquired via institutionally supported programs, such as the NASA Sensor Intercompar-
ison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) activity (Fargion and
McClain, 2003). During its six-year tenure, SIMBIOS enabled the assembly of 67,000 measurements
from1100unique field campaigns collected by an assortment of 62 international researchers for inclu-
sion in the NASA SeaWiFS Bio-optical Archive and Storage System (SeaBASS), the permanent archive
for in situ data obtained under the auspices of the NASA Ocean Biology and Biogeochemistry Pro-
gram (Werdell et al., 2003).While extremely useful, these data remain heterogeneously distributed in
time and space—emphasizing seasonal biases (Spring-Fall) and the coastal and North Atlantic oceans.
In the absence of a coordinated activity, organizations responsible for operational ocean color satellite
missions, such as the NASA Ocean Biology Processing Group (OBPG; oceancolor.gsfc.nasa.gov) oppor-
tunistically seek in situ data records to support their algorithmdevelopment and satellite data product
validation activities.

The Tara Oceans expedition (September 2009 to March 2012) provides one novel opportunity.
Briefly, Tara Expeditions (oceans.taraexpeditions.org ; Karsenti et al., 2011) conducted a ∼91,000 km
voyage on the R/V Tara over two and a half years to capture a view of the global distribution of
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Fig. 1. Global distribution of Tara Oceans stations considered in this analysis. Red circles show all available AC-S hourly 15-
minute bins (N = 1708). Blue squares show MODISA-to-AC-S match-ups (N = 165). Green circles show all available HPLC
measurements (N = 130). Black squares show MODISA-to-HPLC match-ups (N = 13). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

marine planktonic organisms (Fig. 1). As part of this expedition, a hyperspectral absorption and
attenuation meter (WETLabs, Inc. AC-S) was outfitted within the flow-through system of the R/V
Tara (Boss et al., 2013; Slade et al., 2010). Continuous sampling by this inline system alternated
between whole seawater and seawater that passed through a 0.2 µm filter, providing calibration
independentmeasurements of the absorption and attenuation ofmarine particles along the full cruise
track (Slade et al., 2010). Ultimately, Tara Oceans collected 454 days of particulate optical properties
along 70,000 km. Given their broad spatial and temporal distributions, these optical data records
provide ahighly unique resource to support operational ocean color satellite validation andbio-optical
algorithm refinement activities.

Here, we evaluate the inline AC-S measurements collected as part of the Tara Oceans for use as
‘‘ground truth’’ for the validation of MODISA ocean color data products. To our knowledge, underway
measurements of particulate absorption and attenuation coefficients have yet to be used to compre-
hensively evaluate the quality of satellite-derived Ca and IOPs, let alone particulate organic carbon
and phytoplankton community structure. While this requires somemodeling to estimate ocean color
data products of interest, we show that satellite-to-in situ match-ups from these proxy estimations
fall well within the envelope of standard match-ups that use direct quantification of biogeochemi-
cal variables (e.g., high performance liquid chromotography (HPLC) determination of phytoplankton
pigment concentrations). In doing so, we demonstrate the value of flow-through absorption and at-
tenuation meter systems as resources for accumulating substantial volumes of reliable, (potentially)
spatially and temporally diverse, and reasonably low-cost data streams for ocean color satellite-to-in
situ match-up analyses. Furthermore, we explore how continuous, flow-through sampling can assist
in reconciling the comparison of different spatial scales (and sub-pixel variabilities) that confound
standard satellite-to-in situ match-ups analyses (Bailey and Werdell, 2006).

2. Methods

2.1. Tara oceans in situ data

The R/V Tara hosted an inline system within its forecastle bilge that included a WET Labs, Inc.
AC-S instrument and Sea-Bird Electronics SBE45 MicroTSG unit, as described in detail in Boss et al.
(2013). With regards to the former, flowing seawater from 2 m below sea level entered the system
at a Vortex debubbler before a three-way electrically actuated valve that sent the flow either directly
to the AC-S instrument or through a 0.2 µm cartridge filter that preceded the AC-S instrument. We
processed all data following the methods of Slade et al. (2010), which included residual temperature
and salinity corrections. We calculated spectral particulate absorption (ap(λ) = aunfiltered(λ) −

afiltered(λ);m−1) and attenuation (cp(λ) = cunfiltered(λ) − cfiltered(λ);m−1) by interpolating between
the filtered readings when unfiltered seawater was measured and performed a residual temperature
correction to account for possible slight differences in temperature between the filtered and unfiltered
samples (Slade et al., 2010). This provides calibration-independent estimates of ap(λ) and cp(λ),
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as instrumental drifts and residual calibration errors persist in both the filtered and unfiltered
measurements and can therefore be removed by subtracting the former from the latter (as long as
the instrumental drift has a significantly longer timescale than the timescale of switching between
measurements). We averaged all data into one-minute bins to suppress the high frequency variability
(instrument noise plus sample inhomogeneity) that can often mask any low frequency variability of
interest. This ultimately resulted in over 310,000 final spectra of absorption and attenuation over 375
days (attenuation was available for 375 of 454 days (Boss et al., 2013)).

We collected near-surface water samples for HPLC pigment analysis at 130 locations along the
cruise track of the R/V Tara. For each sample, we vacuum-filtered 2 L of water through 25 mm (in
some cases, 47mm) diameterWhatman GF/F glass filters with 0.7µmcapacity. We stored samples in
liquid nitrogen, then at−80°C, until their analysis at the Laboratoire d’Océanographie de Villefranche
(LOV; France). At LOV, the filters were extracted in 3 mL (6 mL for 47 mm filters) 100% methanol,
disrupted by sonication, and clarified two hours later by vacuum filtration. Within 24 h, the extracts
were analyzed by HPLC using a complete 1200 Agilent Technologies system according to the protocol
described in Ras et al. (2008).

2.2. Modeling of ocean color data products

Marine IOPs and Ca are the principle geophysical variables derived from satellite measurements of
ocean color. Historically, Ca provides the standard climate data record from ocean color satellite time-
series (Ras, 2011). More recently, the NASA and the International Ocean Colour Coordinating Group
(IOCCG) invested significant effort in improving remotely sensed retrievals of marine IOPs (Werdell
et al., 2013; IOCCG, 2006), including those that provide indices of phytoplankton and marine particle
community structure (Brewin et al., 2011). With the goal of evaluating MODISA-derived Ca and
IOP data records, we generated estimates of Ca, the spectral backscattering coefficients of particles
(bbp(λ);m−1), and the spectral slopes of bbp(λ) (η; unitless) and cp(λ) (γ ; unitless) from the Tara
inline AC-S time-series.

Following Bricaud et al. (1998), Ca can be related to spectral absorption of phytoplankton (aph(λ);

m−1) in the open ocean via a power-law:

aph(λ) = A(λ)CB(λ)
a . (1)

Phytoplankton absorption in the red can be estimated using the line height method of Davis et al.
(1997) as modified by Boss et al. (2007):

aph(676) = ap(676) − [39/65ap(650) + 26/65ap(715)]. (2)

As in Bricaud et al. (1998) and Boss et al. (2013), we developed a statistical relationship between log-
transformed aph(676) and Ca. To do so, we identified 52 HPLC samples collected within 1 h of the AC-S
stations prepared for satellite-to-in situ match-ups analysis (see Section 2.3 below). Analysis of Type
II linear regression yielded:

aph(676) = A(676)Ca
B(676)

= 0.0152Ca
0.9055, (3)

which corresponds well with a relationship reported for oceanic assemblages of phytoplankton
by Bricaud et al. (1998) (A = 0.0180; B = 0.816) and for a similar dataset by Boss et al. (2013)
(A = 0.0160; B = 0.865). The correlation coefficient and root mean square error for our derived
relationship are 0.88 and 45%, respectively. We produced estimates of Ca via inversion of Eq. (3).

Second, bbp(λ) relates to bp(λ) via:

bbp(λ) = b̃bp(λ)bp(λ) (4a)

bbp(λ) = b̃bp(λ)[cp(λ) − ap(λ)], (4b)

where b̃bp(λ) is the dimensionless backscattering ratio that describes the proportion of light scattered
in the backward hemisphere by particles, and bp(λ) is the spectral scattering of particles, defined as
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the difference between attenuation and absorption (=cp(λ) − ap(λ); m−1). Twardowski et al. (2001)
proposed a spectrally independent relationship between b̃bp(λ) and Ca:

b̃bp = 0.0096 Ca
−0.253, (5)

which yields values of 0.02, 0.011, and 0.008 for Ca of 0.05, 0.5, and 2 mgm−3, respectively. Note
that Whitmire et al. (2007) confirmed the spectral independence of Eq. (5) using a diverse in situ
dataset and reported an average b̃bp of 0.01. Using Ca from Eq. (3) as input into Eq. (5), bbp(λ) can be
therefore be estimated as:

bbp(λ) = (0.0096 Ca
−0.253) [cp(λ) − ap(λ)]. (6)

Finally, we calculated the dimensionless power-law slope for spectral particulate backscattering
(η) and attenuation (γ ) as:

bbp(λ) = bbp(λ0) [λ/λ0]
−η (7a)

cp(λ) = cp(λ0) [λ/λ0]
−γ , (7b)

using the non-linear minimization approach of Levenberg–Marquardt and λ0 = 440 nm. While the
power-law function has been found to fit cp(λ) well and to be linked to size distribution parameters
(Eq. (7b); Boss et al., 2001), we acknowledge that the validity of a similar relationship for bbp(λ) (Eq.
(7a)) remains uncertain and requires future research (Slade et al., 2011).

2.3. Satellite data product validation

We generated Level-2 satellite-to-in situ match-ups for MODISA using the operational OBPG
validation infrastructure (seabass.gsfc.nasa.gov/seabasscgi/search.cgi). We prepared the in situ AC-S
data for comparison with the satellite measurements by generating 15 min averages of Ca, bbp(λ), γ ,
and η centered on 1:30 PM (in the time zone local to the R/V Tara), which coincided generally with the
daily local overpass of MODISA. Satellite data processing and quality assurance for these match-ups
followed Bailey and Werdell (2006). Specifically: (a) temporal coincidence was defined as +/−3 h;
(b) satellite values were the filtered mean of all unmasked pixels in a 5×5 box centered on the in situ
target; and (c) satellite values were excluded when the median coefficient of variation for unflagged
pixels within the box exceeded 0.15. With regards to (a), the satellite-to-in situ time difference never
exceeded one hour, given our use of averages at local 1:30 PM. We processed MODISA data using its
R2013.0 (February 2013) reprocessing configuration. We considered the following MODISA-derived
geophysical variables:

◦ Ca from O’Reilly et al. (1998) (OC3M);
◦ bbp(λ) fromWerdell et al. (2013);
◦ particulate organic carbon (POC; mgm−3) from Stramski et al. (2008); and,
◦ relative particle size class (PSC; %) from Uitz et al. (2006) and Hirata et al. (2011).

Note that the operational OBPG version of OC3M includes the modifications presented in ocean-
color.gsfc.nasa.gov/ANALYSIS/ocv6/. We also downloaded the OBPG operational MODISA-to-in situ
match-up results for qualitative comparison with those from Tara Oceans. Finally, as MODISA
maintains a ∼1.1 km2 footprint at nadir, we calculated the coefficient of variation (COV =

standard deviation/mean) for Ca and a 10 nm bandwidth around bbp(650) from the AC-S at 1 km2

bins along the cruise track to help assess the role of sub-pixel variability in theMODISA-to-in situ Tara
Oceans match-ups.

3. Results

Direct comparisons of satellite-derived and in situmeasurements provide estimates of the accuracy
and precision of the satellite data products (Bailey and Werdell, 2006). Overall, the MODISA and
AC-S-derived Ca compared favorably, particularly for Ca < 4 mgm−3 (Fig. 2A, Table 1). The slope of
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Fig. 2. Comparisons of satellite-derived and in situ Ca . (A) MODISA versus AC-S Ca . (B) MODISA versus HPLC Ca . (C) HPLC versus
AC-S Ca , not limited tomatch-upswithMODISA. In (A) and (B), the black circles show the Tara Oceans satellite-to-in situmatch-
ups, and the gray circles show all available MODISA Ca match-ups available from the OBPG and SeaBASS. The solid line shows
a 1:1 relationship. Table 1 presents complementary regression statistics.

Table 1
Statistics for MODISA versus AC-S Ca and bbp(λ) match-ups determined using Type II linear regression. N , r2 , Slope (SE), Ratio,
and MPD indicate sample size, coefficient of determination, regression slope (standard error), median satellite-to-in situ ratio,
and absolute median percent difference. We calculated all statistics using log-transformed data, with the exception of Ratio
andMPD.We calculatedMPD as themedian of [200%∗ (MODISAi −AC-Si)/(MODISAi +AC-Si)] for a population of imatch-ups.
The bottom row shows regression statistics for coincident (+/−30 min) in situ Ca derived from the AC-S versus HPLC.

Product N r2 Slope (SE) Ratio MPD

Ca – AC-S 165 0.83 1.08 (0.04) 1.08 33.7
Ca – AC-S (< 4 mgm−3) 156 0.85 0.98 (0.03) 1.06 31.7
Ca – HPLC 13 0.87 1.03 (0.12) 1.13 25.0
bbp(412) 167 0.64 1.09 (0.03) 1.04 22.5
bbp(443) 167 0.66 1.12 (0.03) 0.98 19.6
bbp(488) 167 0.68 1.15 (0.03) 0.87 18.6
bbp(531) 167 0.70 1.16 (0.03) 0.77 25.8
bbp(547) 167 0.70 1.16 (0.03) 0.75 28.6
bbp(667) 167 0.72 1.24 (0.03) 0.64 43.3

Ca – AC-S vs. HPLC 52 0.78 1.10 (0.08) 1.01 24.5

the Type II linear regression between AC-S and MODISA Ca was slightly positive (1.08), however, the
r2 (0.83) nearly matched that reported by the OBPG for operational MODISA match-ups analyses that
include all available SeaBASS data (0.88) (Table 2). Visually, the AC-S match-ups fell within the cloud
of all available SeaBASS match-ups (Fig. 2A). When we excluded MODISA-derived Ca > 4 mgm−3

(less 9 stations of 165 total), the slope reduced to almost unity (0.98) and the r2 rose to 0.85 (Table 1).
In both scenarios, MODISA demonstrated a slight positive bias, with median satellite-to-in situ ratios
of ∼1.07 and median absolute percent differences (MPD) of ∼32% (the caption for Table 1 presents
our calculations of MPD). Per Eq. (3), our AC-S estimates of Ca directly follow our derived, statistical
relationship between HPLC estimates of Ca and AC-S estimates of aph(676).

In the satellite ocean color paradigm, the oceanographic community currently considers HPLC-
derived Ca as the state-of-the-art for bio-optical algorithm development and data product validation
(Ras et al., 2008; Hooker et al., 2005). Despite the small sample size, theMODISA and HPLC-derived Ca
compared very well, with a slope near unity (1.03), a ratio of 1.13, and a MPD of 25% (Table 1). Visu-
ally, thesematch-ups stations fell well within the bounds of the global data set of all available SeaBASS
match-ups (Fig. 2B, Table 2). The AC-S and HPLC-derived Ca complemented each other (Fig. 2), which
is not surprising given that the latter provided the power-law coefficients provided in Eq. (3) for AC-S
processing. Despite a ratio of unity, HPLC values from the clearest waters (Ca < 0.02 mgm−3) im-
parted a positive slope (1.10) and elevated MPD (24.5%) for this comparison. Eliminating the three
lowest values (all < 0.02 mgm−3) reduced the slope and MPD to 1.05 and 21.8%, respectively.

Comparisons of MODISA and AC-S-derived bbp(λ) largely matched those reported by the OBPG
(Tables 1 and 2). The r2 ranged from 0.64 to 0.72, which improved upon the operational OBPG results
(0.57 to 0.62). The MPD and ratios, however, degraded to ranges of 18.6 to 43.3 and 0.64 to 1.04,
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Table 2
Statistics for MODISA versus in situ Ca and bbp(λ) match-ups as reported by the OBPG for all available data in SeaBASS
(oceancolor.gsfc.nasa.gov/seabasscgi/search.cgi) as of June 2013. Methods and abbreviations as Table 1.

Product N r2 Slope (SE) Ratio MPD

Ca 760 0.88 1.02 (0.13) 1.12 30.9
bbp(412) 63 0.61 1.05 (0.09) 0.94 17.3
bbp(443) 63 0.62 1.08 (0.09) 0.94 17.3
bbp(488) 63 0.62 1.11 (0.09) 0.95 17.2
bbp(531) 64 0.62 1.12 (0.09) 0.97 17.9
bbp(547) 63 0.61 1.14 (0.10) 0.97 18.5
bbp(667) 63 0.57 1.17 (0.10) 1.00 19.9

Fig. 3. Comparisons of satellite-derived and in situ IOPs and POC. (A) MODISA versus AC-S bbp(443). The solid line shows a
1:1 relationship and Table 1 presents complementary regression statistics. (B) MODISA POC versus AC-S bbp(700) (N = 167).
The red and green solid lines show the relationships presented in Stramski et al. (2008) and Loisel et al. (2001). (C) MODISA
POC versus AC-S cp(665) (N = 167). The red and blue solid lines show the relationships presented in Stramski et al. (2008)
and Behrenfeld and Boss (2006). (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

respectively (in contrast to 17.2 to 19.9 and 0.94 to 1.0). Similar to that reported in Werdell et al.
(2013), the slopes and ratios showed spectral dependence (inverse relative to each other), which
indicates potential parameterization issues within the remote-sensing model (GIOP-DC; e.g., Raman
effects are ignored). As for the satellite-to-in situ Ca match-ups, the AC-S results visually fall within
the full dynamic range of operational OBPG results (Fig. 3A). However, the sample sizes for the AC-S
match-ups exceeded those for the operational OBPGmatch-ups by almost three-fold (Tables 1 and 2),
and many of these AC-S match-ups fell well below the lowest bbp(λ) values available in SeaBASS.
Meso- and eutrophic samples dominate the population of data archived in SeaBASS (Werdell and
Bailey, 2005), whereas oligotrophic conditions dominate the world’s oceans.

Many empirical relationships between POC, bbp(λ), and cp(λ) have been proposed (e.g., Stramski
et al., 2008; Loisel et al., 2001; Behrenfeld and Boss, 2006; Cetinić et al., 2012). As in situ POC were not
collected as part of Tara Oceans, we explored these relationships to evaluate the use of optical data
as proxy ‘‘ground truth’’ measurements for comparison with MODISA-derived POC. The relationship
between MODISA POC and AC-S bbp(700) generally mimicked two common relationships developed
for near surface waters (Fig. 3B). While other relationships exist (as reported in Cetinić et al. (2012)),
we arbitrarily chose relationships for the surface layer, as ocean color satellite instruments do not
‘‘see’’ far below the first optical depth (i.e., the layer over which light attenuates to ∼37% of its
magnitude at the surface) and a detailed evaluation of POC–IOP relationships exceeded the scope of
this paper. Over their full dynamic ranges, bbp(700) and POC behaved similarly to both Loisel et al.
(2001) (r2 = 0.76; root mean square error (RMSE) = 0.14 for log-transformed data) and Stramski
et al. (2008) (r2 = 0.76; RMSE = 0.14). Likewise, the relationship between MODISA POC and AC-S
cp(665) followed two common relationships developed for near surface waters (Fig. 3C). Over their
full dynamic ranges, cp(665) and POC generally followed both Behrenfeld and Boss (2006) (r2 = 0.80;
RMSE = 0.14) and Stramski et al. (2008) (r2 = 0.80; RMSE = 0.15).
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Fig. 4. Dominant PSCs as determined by Uitz et al. (2006) (top) and Hirata et al. (2011) (bottom). Red, blue, and green circles
indicate micro-, nano-, and picoplankton, respectively. Black circles indicate stations where a dominant PSC could not be
determined. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

We expect both γ and η provide an index of particle size (e.g., Boss et al., 2001; Behrenfeld and
Boss, 2006; Loisel et al., 2001, 2006), with lower values indicating larger mean particle sizes. The Ca-
based PSC algorithms proposed by Uitz et al. (2006) and Hirata et al. (2011) provided straightforward
(easily implemented) methods for estimating phytoplankton sizes from MODISA radiometric data.
Both report the relative concentrations of micro- (>20 µm), nano- (2–20 µm), and picoplankton
(<2µm).We compared average γ and η for theMODIS-derived dominant size classes.We considered
a station to be dominated by a PSCwhen the relative presence of that class exceeded 45% (Fig. 4). Under
this definition, 31 and 16 match-ups stations remained unclassified by Uitz et al. (2006) and Hirata
et al. (2011), respectively. For the satellite-to-in situ match-ups identified as dominated by micro-,
pico-, and nanoplankton by Uitz et al. (2006), the AC-S reported average γ of 0.42, 0.83, and 0.88,
respectively (Fig. 5). For the three PSCs assigned by Hirata et al. (2011), the AC-S reported average γ of
0.48, 0.87, and 0.83. Likewise, for the satellite-to-in situmatch-ups identified as dominated bymicro-,
pico-, and nanoplankton by Uitz et al. (2006), the AC-S reported average η of 0.10, 0.62, and 0.68,
respectively (Fig. 5). For the three PSCs assigned by Hirata et al. (2011), the AC-S reported average η of
0.13, 0.67, and 0.64. TheMODIS-derived PSCs, γ , and η all converged to discriminate between stations
with the largest microphytoplankton and the smaller nano- and picophytoplankton—e.g., Fig. 5
shows decreasing η and γ with increasing contributions of microplankton and increasing η and
γ with increasing contributions of nano- and picoplankton. Effectively discriminating between the
two smallest PSCs, however, remained ambiguous for both the remote-sensing and in situ optical
methods.

Finally, to assess the role of sub-pixel variability in the MODISA-to-in situ Tara Oceans match-ups
described above, we calculated the COVs for bp(650) and Ca for 1 km2 bins along the R/V Tara cruise
track (Fig. 6). Themedian COV for bp(650) was 0.012 (equivalent to 1.2%), with a 99th percentile of 0.1
(10%). The median COV for Ca was 0.06 (6%), with a 99th percentile of 0.4 (40%). Recall that MODISA
maintains a 1.1 km2 pixel footprint at nadir. In practice, this exercise demonstrated minor within-
satellite-pixel variability along the Tara Oceans cruise track and suggested that sub-pixel variability
cannot fully explain the mismatch between satellite-derived and in situmeasurements for 99% of the
match-up stations considered in this analysis.
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Fig. 5. Box and whisker plots for γ (top row) and η (bottom row) versus PSC frequency as determined by Uitz et al. (2006).
The black boxes indicate the range from the first to third quartiles for frequency bins from 10–30, 30–50, 50–70, and 70%–90%.
The red lines indicate the median. The blue lines show the range from the minimum to maximum value. The solid green circles
indicate outliers (defined as more than 1.5 times the lower or upper quartile). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Coefficients of variation (COV; unitless) of AC-S measurements merged into 1 km2 spatial bins for bp(650) (A) and Ca
(B). Sample size is 36,000. Themedian COVs for bp(650) and Ca are 0.012 and 0.06, respectively. The 99th percentiles for bp(650)
and Ca are 0.1 and 0.4, respectively.

4. Discussion

Developing and validating biogeochemical data records from operational ocean color satellite
instruments requires substantial volumes of high quality in situ data (Werdell and Bailey, 2005;
Bailey and Werdell, 2006; Fargion and McClain, 2003). Given their potentially large temporal and
spatial scales, underway expeditions such as Tara Oceans offer significant potential to increase data
volumes, provided that data collected on these expeditions are relevant to and of sufficient quality for
ocean color satellite calibration and validation activities. We showed how the inlinemeasurements of
hyperspectral absorption and attenuation coefficients collected onboard the R/V Tara can be used to
evaluateMODISA estimates of Ca, bbp(λ), POC, and PSCs.With regards to such validation activities, the
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most obvious strength of such flow-throughmeasurements remains their sampling rate. The 375 days
of AC-S measurements resulted in >165 viable MODIS-to-in situ match-ups (Table 1). Furthermore,
the continuous sampling provided sufficient data to confirm that sub-pixel variability does not drive
mismatches between the satellite and in situ measurements (Fig. 6). A clear weakness, however,
remains the need to apply bio-opticalmodels to estimate biogeochemical quantities of interest (e.g.,Ca
from ap(λ) and cp(λ)). Our results indicate this can be done somewhat reliably and effectively,
however, they also point to model assumptions and parameterizations that can be improved upon.

Chlorophyll-a can be reliably estimated using ap(λ) via the line-height method (Eq. (2); Boss et al.,
2007), given reasonable estimates of how Ca varies with aph(λ) (Eq. (3); Bricaud et al., 1998). We
derived a cruise-specific relationship between Ca and aph(λ), and realized MODISA-to-in situ match-
ups of comparable quality to those from HPLC-derived Ca. The number of AC-S match-ups exceeded
that for the HPLC match-ups by 100-fold (165 versus 14), which reinforces the benefit of inline time-
series when in need of high volumes of data (say, during the first year of a new satellite mission).
However, improved resultsmight be achievedwith refined line-heightmethods (Roesler and Barnard,
2013) and progressively more robust estimates of Ca from aph(λ). Given the near consistency of b̃bp in
the open ocean (Twardowski et al., 2001; Whitmire et al., 2007), bbp(λ) can also be reliably estimated
from bp(λ). Not only did theMODISA-to-AC-Smatch-ups of bbp(λ)modestly agreewith those reported
by the OBPG for all available SeaBASS data (Tables 1 and 2; Fig. 3A), but the sample size of the former
exceeded the latter three-fold. While bbp(λ) modeled from ap(λ) and cp(λ) remains several steps
removed from the direct measurement of bbp(λ) (Twardowski et al., 2001), our results indicate they
are of sufficient quality for use in ocean color validation activities, at least early in a new mission for
preliminary assessment of remotely-sensed variables.

Many published relationships between POC, bbp(λ), and cp(λ) exist, however,mostwere developed
using spatially-limited datasets and with varied in situ measurement protocols (Cetinić et al., 2012).
But, a paucity of POCmeasurements exists in SeaBASS (although, we acknowledge that larger datasets
exist elsewhere), indicating a need to pursue optical proxies for use in satellite validation activities.
Our AC-S-derived IOPs provided a reasonable first-order verification of satellite-derived POC (Fig. 3).
The relationships between POC-and-bbp(λ) and POC-and-cp(λ) both largely followed previously
published relationships for the near-surface ocean. Improved agreement between satellite POC and in
situopticsmight be realized, however, if discrete in situmeasurements hadbeenmadeof POC as part of
TaraOceans. Aswedid for theAC-S-derivedCa usingHPLC analyses, suchdiscretemeasurements could
be used to tune POC-to-IOP relationships for the expedition cruise track. As for POC, large volumes
of direct measurements of PSCs remain uncommon in most public databases. To overcome this, the
ocean color community commonly uses HPLC-derived pigments as proxy indicators of phytoplankton
community structure (see, e.g., the discussion of diagnostic pigment analyses presented in Uitz et al.
(2006) and Hirata et al. (2011) and references therein). But, the optical parameters η and γ provide
alternate proxy indicators of particle sizes (Boss et al., 2001; Loisel et al., 2006). On average, the
underway AC-S estimates of η and γ appear to effectively discriminate between the largest and
smallest particles (microphytoplankton versus nano- andpicoplankton) (Fig. 5). The use of these in situ
proxies for PSCs remains an ongoing, unresolved issue (both using HPLC and optics), as does achieving
convergence in remote-sensingmethods to estimate PSCs (e.g., Brewin et al., 2011; Fig. 4). Our results
contribute to an emerging body of research on the validation of remotely sensed PSCs, however,
significant work remains to truly understand relationships between varied indirect estimates of
particle sizes.

We did not engage in this activity to ultimately propose that underway measurements of IOPs
replace discrete biogeochemical measurements or vertical profiles in ocean color algorithm develop-
ment and satellite data product validation activities. Rather, we hoped to demonstrate that underway
measurements provide a previously unexploited means for achieving substantial volumes of comple-
mentary, high quality data for use in these activities. Tuning the AC-S estimates of Ca to sparsely and
discretely sampled HPLC-derived Ca during the Tara Oceans expedition extended its sample size of
satellite-to-in situ match-ups from 13 to 165. Furthermore, in the absence of a broad, institutionally
supported program such as SIMBIOS, opportunistically outfitting sea-going vessels (of any purpose)
with an inline system could provide high volumes of data with low costs relative to other data ac-
quisition strategies. For example, for the 18-month overlap between the SIMBIOS Program and the
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MODISA mission (mid 2002 through 2003), the sample size of MODISA-to-in situ Ca match-ups aver-
aged 155 per year. In the four years that followed the conclusion of SIMBIOS (2004–2007), this rate fell
to 104 Ca match-ups per year. In three of those years (2005–2007), the average rate fell further to 54
per year. In contrast, in the two and a half year overlap between Tara Oceans andMODISA, the sample
size of MODISA-to-AC-S-derived Ca match-ups averaged 66 per year. In our current era of imposing
rapid validation requirements on new satellite missions – and our community-wide need to develop
remote sensing algorithms and validate satellite data records on unprecedented temporal and spatial
scales – our results have significant implications on how forthcoming calibration and validation teams
for existing and upcoming satellite missions will be constructed.
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